

P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEM END EXAMINATIONS APRIL -2025

I B.SC: MATHEMATICS: CORSE 4-ANALYTICAL SOLID GEOMETRY & PROBLEM SOLVING SESSION

TIME: 2 HRS

DATE& SESSION	25.04.2025 & FN	REG NO	02	4	M	AT	1	6	MAX MARKS	50
02002011	1 1 1	1	J	1	L					

SECTION - I

Answer any THREE questions by attempting at least One question from each section 3×10= 30M

PART - A

- 1. A variable plane is at a constant distance 3p from the origin and meets the axes in A,B,C. Show that the locus of the centroid of Δ ABC is $x^{-2}+y^{-2}+z^{-2}=P^{-2}$
- 2. Prove that the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. Also find their point of intersection and the plane containts the lines.
- 3. Find length and equation S.D between the lines $\frac{x-2}{2} = \frac{y-3}{4} = \frac{z-4}{5}$, $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$
- 4. Find the pole of the plane x+2y+3z=7 w.r.t the sphere. $x^2+y^2+z^2-2x-4y-6z+11=0$
- 5. Find the limiting points of the coanal system of spheres determined by $x^2+y^2+z^2+4x-2y+2z+6=0$, $x^2+y^2+z^2+2x-4y+2z+6=0$
- 6. Find the equation the right circular cone whose vertex is (1,-2,-1), axis line $\frac{x-1}{3} = \frac{y+2}{4} = \frac{z+1}{5}$ and semi vertical angle 60° .

SECTION - II

Answer any FOUR Questions.

 $4 \times 5 = 20M$

- 7. Show that the equation of plane passing through the point (2,2,-1) (3,4,2) (7,06,6) is 5x+2y-3z-17=0.
- 8. Find the image of the point (2,-1,3) in the plane 3x-2y+z=9
- 9. Find the center and radius of the circle $x^2+y^2+z^2-2y-4z-11=0$
- 10. Find the pole of the plane x-y+5z-3=0 w.r.t. the sphere x+2y+2z-15=0, $x^2+y^2+z^2=9$
- 11. Show that the spheres $x^2+y^2+z^2+6y+2z+8=0$, $x^2+y^2+z^2+6x+8y+4z+20=0$ are orthogonal.
- 12. Find the equation of the cone whose vertex is (1,2,3) and base curve $y^2=4ax$, z=0
- 13. Find the enveloping cone at the (1,1,1) and generators touching the sphere $x^2+y^2+z^2-2x+4z-1=0$.